535/2 PHYSICS Paper 2 Nov./Dec. 2020 2¹/₄ hours

WAKISO-KAMPALA TEACHERS' ASSOCIATION (WAKATA)

WAKATA MOCK EXAMINATIONS 2020

Uganda Certificate of Education

PHYSICS

Paper 2

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

Answer five questions

Any additional question(s) answered will **not** be marked.

Mathematical tables and silent non programmable calculators may be used. These values of physical quantities may be useful to you:

Acceleration due to gravity	$= 10 \text{ ms}^{-2}$
Specific heat capacity of water	$= 4,200 \mathrm{JKg^{-1}K^{-1}}$
Specific heat capacity of copper	$= 400 \mathrm{JKg^{-1}K^{-1}}$
Specific latent heat of fusion of water	$= 340,000 \mathrm{JKg^{-1}}$
Speed of sound in air	$= 330 \mathrm{ms^{-1}}$
Density of water	$= 1,000 \text{ kgm}^{-3}$

What is meant by **acceleration due to gravity**? (a) (i)

(01mark)

- (ii) Describe an experiment to determine acceleration due to gravity using a pendulum bob. (06marks)
- (b) Explain briefly why a person feels heavier than usual at the instant an elevator starts accelerating upwards. (02marks)
- A bomb is released vertically down wards from a fighter jet moving at a horizontal (c) velocity of 100ms^{-1} and 2 km high as shown in figure **1**

1.

2.

3.

	Find the;			
	(i)	distance <i>x</i> moved by the bomb.	(03marks)	
	(ii)	velocity with which the bomb is moving on striking the ground.	(04marks)	
(a)	(i) (ii)	State Pascal's principle of transmission of pressure .	(01mark)	
	(11)	pressure	(03marks)	
(b)	(i) (ii)	Explain why it is difficult to take a drink using a straw with a hole. State two uses of pressure measurement.	(02marks) (02marks)	
(c)	A U - then f throu densi (i)	- tube of cross – sectional area 0.5 cm^2 has some mercury first poured in 7 cm ³ of liquid X is poured through one limb and 4.5 cm^3 of liquid Y is poured through the other limb. If liquid X has a density of 1000 kgm^{-3} and liquid Y has ty of 800 kgm^{-3} , calculate the; difference in levels between the mercury surfaces.	, oured as a (05marks)	
	(111)	difference in levels between the surfaces of liquid X and Y.	(01mark)	
(a)	(1) (ii)	What is diffusion ? Describe an experiment to demonstrate the diffusion of a solute in a so	(01mark) olvent. (04marks)	
(b)	Explain what happens to the molecules of a heated solid as more and more heat is added. (0)		(03marks)	
(c)	(i) (ii)	Define a spring constant . A 5.0 cm long spring was used in an experiment. When a 200g mass we suspended using a mass hanger on the spring its new length became 6. When the mass on the hanger was changed to 410g, the length of the se changed to 8.0cm. Calculate the constant, <i>K</i> , of the spring.	(01mark) vas 5 cm. pring (04marks)	

2

- (d) State **two** ways how concrete may be made to withstand tensional forces. (02marks)
- **4.** (a) Define **resonance** as applied to sound waves. (01mark)
 - (b) Describe an experiment to demonstrate resonance in an air tube. (04marks)
 - (c) Figure 2 shows a cross section of a ripple tank in which A is a straight dipper attached to a vibrator and **B** is a barrier with two gaps.

	(i)	Sketch the diagram showing the waves produced when A vibrates		
		perpendicular to the water surface.	(02marks)	
	(ii)	State two properties of waves shown in your diagram.	(02marks)	
(d)	Sound tempe Calcu	Sound of frequency 264 Hz has a velocity of 320ms ⁻¹ . At a later time, the temperature changed and the velocity increased to 330ms ⁻¹ . Calculate the change in wave length and explain why increase in temperature		
	increa	ses velocity of sound.	(05marks)	
(e)	State	two applications of beats.	(02marks)	

- 5. (a) State the conditions for total internal reflection to occur. (02marks)
 - (b) Figure **3** shows light incident on a glass prism and refracted.

Find the size of angle i.

(c)	Using a ray diagram show how a converging lens is used as a magnifying glass. (03marks				
(d)	Distinguish between secondary and primary colours.				
(e)	Explain why an object illuminated by white light appears(i) black(ii) coloured		(02marks) (02marks)		
6.	(a)	(i) (ii)	Define specific latent heat of fusion of a solid. Describe a simple experiment to determine the specific latent heat of fusion of ice using an electric current.	(01mark) (06marks)	
	(b)	1.8kg mach ice at	g of water is put in an ice making machine. If the water is at 40° C and the ine removes heat at a rate of 200J/s, how long would it take to convert the -15° C? (specific latent heat capacity of ice = 336,000Jkg ⁻¹¹	ne it into	

specific heat capacity of ice = $2,100Jkg^{-1}K^{-1}$ (04marks)

Turn Over

State what happens when salt is added to ice. (c)

- Explain how a green house is able to maintain higher temperatures than the (d) sorroundings. (03marks)
- (e) State **one** use of forests in the reduction of the green house effect. (01mark)
- 7. Define (a)
 - Self induced emf. (i)

(ii) **Mutual induction**

- With the aid of a diagram, describe the action of a step up transformer. (05marks) (b)
- Explain briefly how power is transported from Owen falls dam to your home. (03marks) (c)
- A cell of Emf, E and internal resistance, r is connected to resistors of 2Ω , 4Ω (e) and 6Ω as shown in figure 4.

When switch *K* is open, the ammeter reads 2.00A and when *K* is closed, ammeter reads 2.64A. Calcuate:

- internal resistance, r of the battery. (04marks) (i)
- energy lost per second in driving current through the cell when the switch, K(ii) is open. (02marks)
- 8. What is meant by; (a)
 - **Photo electric emission** (01mark)(i)
 - **Thermionic emission** (ii) (01mark)
 - List **two** applications of photo cells. (b)
 - State the energy changes that take place in an X –ray tube. (c)
 - Explain how intensity and penetrating power of X –rays produced in (d) (i) an X —ray tube may be varied. (03marks)
 - Briefly describe how X —rays may be used to locate the broken part of (ii) a bone. (03marks)
 - Uranium $\begin{array}{c} 235\\92 \end{array}$ U decays according to the nuclear equation below. (e) $\sum_{92}^{235} U + \frac{1}{0} n \longrightarrow \sum_{56}^{x} Ba + \frac{92}{v} Kr + 3\frac{1}{0} n$ Find the values of *x* and *y*. (03marks)
 - Give one advantage of a Cathode Ray Oscilloscope (C.R.O) as a voltmeter. (01mark)(f)

(02marks)

(01mark)

(02marks)

(02marks)